Complexity Theory

Part Two

Recap from Last Time

The Complexity Class P

 The complexity class P (polynomial time) is
defined as

P={L| Thereis a polynomial-time
decider for L }

 Intuitively, P contains all decision problems
that can be solved efficiently.

« This is like class R, except with “efficiently”
tacked onto the end.

The Complexity Class NP

The complexity class NP (nondeterministic
polynomial time) contains all problems that
can be verified in polynomial time.

Formally:

NP ={ L | Thereis a polynomial-time
verifier for L }

Intuitively, NP is the set of problems where
“yes” answers can be checked efficiently.

This is like the class RE, but with “efficiently”
tacked on to the definition.

The Biggest Unsolved Problem in
Theoretical Computer Science:

P PNP

NP

{ L | there is a polynomial-time
decider for L }

{ L | there is a polynomial-time
verifier for L }

RE

{ L | thereis a
decider for L }

{ L | thereis a
verifier for L }

We know that R # RE.

So does that mean P # NP?

A Problem

 The R and RE languages correspond to
problems that can be decided and
verified, period, without any time
bounds.

« To reason about what's in R and what's
in RE, we used two key techniques:

 Universality: TMs can simulate other TMs.

 Self-Reference: TMs can get their own
source code.

« Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P PNP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

New Stuff!

A Challenge

Problems in NP vary widely in their
difficulty, even if P = NP.

How can we rank the relative difficulties
of problems?

Reducibility

Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.

Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.

-
@ <
D -

Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum
mafching.

Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.

N\

A maximum \\
mafching, \(j i j

Maximum Matching

 Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.

« Using this fact, what other problems can
we solve?

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

|

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

|

bool canPlaceDominoes(Grid G, int k) {
return hasMatching(gridToGraph(G), k);

Which of the following is the most reasonable conclusion to draw,
given the existence of the above function?

A. Solving domino tiling on a 2D grid can’t be “harder”
than solving maximum matching.

B. Solving maximum matching can’t be “harder”
than solving domino tiling on a 2D grid.

C. Both A and B.

Go to
PollEv.com/cs103spr25

Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,
because if we can solve maximum
matching efficiently, we can solve domino
tiling efficiently.

bool solveProblemA(string input) {
return solveProblemB(translate(input));
}

Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve
problem A.

bool solveProblemA(string input) {
return solveProblemB(translate(input));
}

« If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A =, B.

« We say that A is polynomial-time
reducible to B.

* Assuming that translate
runs in polynomial time.

Polynomial-Time Reductions

o ITA spBandB € P, then A € P.

Polynomial-Time Reductions

o ITA spBandB € P, then A € P.

Polynomial-Time Reductions

o ITA spBandB € P, then A € P.

Polynomial-Time Reductions

o ITA spB and B € P, then A € P.
. ITA spB and B € NP, then A € NP.

Polynomial-Time Reductions

o ITA spB and B € P, then A € P.
. ITA spB and B € NP, then A € NP.

%
NP
¥ ¥

Polynomial-Time Reductions

o ITA spB and B € P, then A € P.
. ITA spB and B € NP, then A € NP.

*

w4
NP

J ¥

Polynomial-Time Reductions

o ITA spB and B € P, then A € P.
. ITA spB and B € NP, then A € NP.

koo Dk
NP

W OW

This <p relation lets us rank the relative
difficulties of problems in P and NP.

What else can we do with it?

Another Example

Satisfiability

« A propositional logic formula ¢ is called satisfiable if there
is some assignment to its variables that makes it evaluate to
true.

« Which of the following formulas are satisfiable?
pAq
pA—D
p—(q@A—q)

« An assignment of true and false to the variables of ¢ that
makes it evaluate to true is called a satisfying
assignment.

SAT

The boolean satisfiability problem (SAT) is the
following:

Given a propositional logic
formula @, is @ satisfiable?

Formally:
SAT = { (@) | @ is a satisfiable PL formula }

Finding good algorithms for SAT is important in
practice and lot of effort has been devoted to
developing tools for SAT.

But SAT also played a starring role in the formulation
of P vs. NP.

An Idea

« We will show how to encode a
computation of a polynomial time Turing
Machine M on input x as a propositional
logic formula F

M(x) accepts iff F is satisfiable

Components

« We must show how to
« Encode M's tape

Encode the tape head

Encode which instruction is being executed
Encode each instruction

Encode accepting/rejecting

« We are just going to sketch this out ...

Insight

« Let's say TM M runs for at most n steps

 Could be any polynomial in n, but let's keep things
simple

« Then M can access at most n tape cells

« We can represent the history of M's entire computation
as an n X n array

 One row for each of n time steps
 n cells in a row for the tape contents at each step

« Some of the cells in the array may not be used, but that's
OK, what's important is that we can give a (polynomial in
n) upper bound on the number of cells needed

The Tape

« Assume the tape alphabet is {true, false}
 Imagine a 2D grid of boolean variables

 The ith row is the tape at computation step i
« bij is the value of the jth tape cell at step i

The Tape Head

 Represent the tape head's position at all points in
time as another n x n array of boolean variables

« The tape head can only be at one position on the
tape at each point in time

« So only one boolean in each row can be true

 Add boolean formulas to enforce this for every cell,
e.g.:
- h20 - (—h21 N =h22 N =h23 A ...)
- h21 - (—=h20 N =h22 N =h23 A ...)

The Program Statement

« At each step, the TM executes one
program statement

 If there are k statements in the program,
we can use a k x n array of boolean
variables sij to represent the statement
being executed at each step

 Only one statement can be the focus at each
point in time

 The construction is similar to the tape head

The Initial State

 Write a formula that defines the starting
state of the machine:

o If the inputisiO il i2 i3, then

- b00 < i0A b01 < i1 A b02 <12 A b03 <13
- All other tape locations constrained to be 'false’
- b04 o false A bO5 < false A ...

 Execution starts with the first instruction:
- s00 < true

 The tape head starts at the first input cell:
- h0O0 < true

Executing a Statement

Let the wth statement be “write true'
Assume we are at time step i

Write true at the current head position, copy tape contents from previous step at other
positions:

(siw A hiO) = bi0
(siw A -hi0) = (bi0 < b(i-1)0)
(siw A hil) - bil

(siw A -hil) - (bil < b(i-1)1)

In the next step we execute the next program statement:
siw = s(i+1)(w+1)

The tape head does not move:

(siw A hiO) - h(i+1)0

(siw A hil) - h(i+1)1

Accepting and Rejecting

* One boolean variable a to representing
accepting or rejecting

 If instruction w is accept, then add
* SIW — d
 If instruction w is reject, then add

e SIW — —-d

En

coding P Using SAT

« We can construct a boolean formula (of
polynomial size) that is satisfiable if and
only if the polynomial time decider M

accepts
« Conjunc

e Formul
e Formu

its input x.
tion of:

as for the tape contents
as for the head position

e Formul

as for program statements

Encoding NP Using SAT

 To encode polynomial time verifiers, we change
only the input!

o If the inputisiO il i2 i3, then
- b00 < i10A b01 <11 A bO2 <12 A b03 < i3

« After the input, we leave a number of boolean
variables equal to the size of the certificate
unconstrained in step O

- Since these variables are unconstrained, the SAT
algorithm can fill them in to make the formula
satisfiable if possible - i.e., SAT can guess the
certificate!

« All remaining tape locations are constrained to
be 'false' in step 0

bool PtimeVerifier(Machine M, Input x) {
return isSatisfiable(ToFormula(M,x));

Intuition:

Executing a plynomial time verifier can’t be
“harder” than solving SAT because if we
can solve SAT efficiently, we can solve
polynomial time verification efficiently

We've seen that every NP problem is reducible to
SAT.

So SAT is a least as hard as every problem in NP.

SAT is NP-hard

SAT is also in NP

|dea: The certificate for a SAT problem is a
satisfying assignment, which can be checked in
linear time.

Since SAT is in NP and also at least as hard as
every other problem in NP, we say SAT is NP-
complete

Time-Out for Announcements!

Please evaluate this course on Axess.

Your feedback makes a difference.

Final Exam Logistics

* Our final exam is on Saturday, Jun 7th from
8:30AM - 11:30 AM.

e Seating assignments will be online soon; we’ll
make an announcement when they’re ready.

« The final exam is cumulative

» Like the midterms, it’s closed-book, closed-
computer, and limited-note. You can bring one
double-sided 8.5” X 11” notes sheet with you.

Review Sessiom

« Thursday, 2-3 PM in STLC115

Back to CS103!

Intuition: The NP-complete problems are
the hardest problems in NP.

If we can determine how hard those
problems are, it would tell us a lot about
the P PNP question.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Intuition: This means the hardest
problems in NP aren’t actually that
hard. We can solve them in
polynomial time. So that means we
can solve all problems in NP in
polynomial time.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

s)
)

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

S *
" o P=NP

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L € P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A =p L. Since L € P and A <, L, we see that A € P. Since
our choice of A was arbitrary, this means that NP C P, so
P=NP. H

The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P = NP.

Intuition: This means the hardest
problems in NP are so hard that
they can’t be solved in polynomial
time. So the hardest problems in NP
aren’'t in P, meaning P # NP.

The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P = NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that . € NP. Therefore, we know
that Le NPand L € P,soP = NP. &

NP
A
A

Why All This Matters

« Resolving P PNP is equivalent to just figuring out
how hard SAT is.

SATeP < P=NP

« We've turned an abstract, theoretical problem
about solving problems versus checking solutions
into the concrete task of seeing how hard one
problem is.

* You can get a sense for how little we know about
algorithms and computation given that we can't
yet answer this question!

Why All This Matters

* You will almost certainly encounter NP-hard
problems in practice - they're everywhere!

« If a problem is NP-hard, then there is no known
algorithm for that problem that

 is efficient on all inputs,
« always gives back the right answer, and
« runs deterministically.

 Useful intuition: If you need to solve an NP-hard
problem, you will either need to settle for an
approximate answer, an answer that's likely but
not necessarily right, or have to work on really
small inputs.

The Big Picture

Take a minute to reflect on your journey.

Set Theory
Power Sets
Cantor’s Theorem
Direct Proofs
Parity
Proof by Contrapositive
Proof by Contradiction
Modular Congruence
Propositional Logic
First-Order Logic

Logic Translations

Logical Negations
Propositional Completeness
Vacuous Truths
Perfect Squares
Triangular Numbers
Tournaments
Functions
Injections
Surjections
Involutions

Monotone Functions

Minkowski Sums

Bijections

Graphs
Connectivity
Independent Sets
Vertex Covers
Trees
Bipartite Graphs
The Pigeonhole Principle
Ramsey Theory
Mathematical Induction

Complete Induction

The Spanning Tree Protocol

Formal Languages
DFAs
Regular Languages
Closure Properties
NFAs
Subset Construction
Kleene Closures
Error-Correcting Codes
Regular Expressions
State Elimination
Monoids

Distinguishability

Myhill-Nerode Theorem
Nonregular Languages
Context-Free Grammars
Merkle-Damgéard Construction
Fixed Point Theorems
Turing Machines
Church-Turing Thesis
TM Encodings
Universal Turing Machines
Self-Reference
Decidability
Recognizability
Self-Defeating Objects
Undecidable Problems
The Halting Problem
Verifiers
Diagonalization Language
R and RE
co-RE
Complexity Class P

Complexity Class NP

P 'PNP Problem
Polynomial-Time Reducibility

NP-Completeness

You've given yourself the foundation
to tackle problems from all over
computer science.

PRPs and PRFs | fromcs2ss I

Pseudo Random Function (PRF) defined over (K,X,Y):

F: KxX > Y

such that exists “efficient” algorithm to evaluate F(k,x)

Pseudo Random Permutation (PRP)

Functions befween
sefs! K x X is the

set of all pairs made

E: KxX —» X

such that:
1. B

Definitions in
ferms ot
et ficiency:

from K and X,

“efficient”]algorithm to evaluate E(k,x)

ction E(Kk,-) is [one-to-one}\
“efficient” inversion algorithm
Injectivity:

From CS124

From Languages to Information

Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

>>> text = 'That U.S.A. poster-print costs $12.40...’
>>>/Eéttern =1’ "7 (?x) # set flag\to allow verbose regexps

([A-Z]\.)+ # abbreviatfions, e.g. U.S.A.
| \w+(-\w+)* # words wi optional internal hyphens
| \$?2\d+(\.\d+)?%? # currency |Jand percentages, e.g. $12.40, 82%
| \.\.\. # ellipsis
| [IL.,;"’?20:-_"] # these are separate tokens; includes], [

BANE

>>> nltk.regexp_tokiize(text, pattern)

[’That’, 'U.S.A.’, ’poster-print’, ’costs’, '$12.40°, ’...’]

11s a big

regex!

Course Recommendations

CS154: Introduction to the Theory of Computation

 The “spiritual sequel” to CS103; does a deep dive into automata, TMs,
and computability/complexity theory.

« If you enjoyed the tail end of this course, highly recommended as a
next step.

CS161: Design and Analysis of Algorithms

« A natural next course in CS theory, focusing on the design of efficient
algorithms.

* (Super helpful for job interviews!)
CS143: Compilers

« Use your automata and CFG prowess to translate source code into
machine code. Extremely rewarding!

CS257: Introduction to Automated Reasoning

« See how to automate formal proofs, play around with SAT and
propositional logic, etc.

Course Recommendations

Theoryland

CS154 A
Phil 151
Phil 152
Math 107]
Math 108 -
Math 113
Math 120
Math 161 J

}Complexity

>Computability

»Graphs

>Functions

} Set Theory

Math 152 }Number Theory

Applications
C5124 \ Languages /
CS]_4:3 Automata
CSlol
CS224W)

> Graphs
CS242
CS243
CS246 > IFunctions
CS250)
CS251

CS255 /

Your Questions

Final Thoughts

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

