
  

Complexity Theory
Part Two



  

Recap from Last Time



  

The Complexity Class P

● The complexity class P (polynomial time) is
defned as

     P = { L | There is a polynomial-time 
                   decider for L }

● Intuitively, P contains all decision problems
that can be solved eficiently.

● This is like class R, except with “eficiently”
tacked onto the end.



  

The Complexity Class NP

● The complexity class NP (nondeterministic
polynomial time) contains all problems that
can be verifed in polynomial time.

● Formally:

      NP = { L | There is a polynomial-time 
                        verifer for L }

● Intuitively, NP is the set of problems where
“yes” answers can be checked eficiently.

● This is like the class RE, but with “eficiently”
tacked on to the defnition.



  

The Biggest Unsolved Problem in
Theoretical Computer Science:

P ≟ NP



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifer for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifer for L }



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

A Problem

● The R and RE languages correspond to
problems that can be decided and
verifed, period, without any time
bounds.

● To reason about what's in R and what's
in RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own

source code.

● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



New Stuf!



A Challenge



  

      NP        PREG

Problems in NP vary widely in their 
dificulty, even if P = NP.

 

How can we rank the relative dificulties 
of problems?



  

Reducibility



  

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.
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Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

A matching, but
not a maximum

matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

A maximum
matching.



  

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for fnding maximum
matchings.

● Using this fact, what other problems can
we solve?



  

Domino Tiling
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Domino Tiling



  

Solving Domino Tiling
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Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

bool canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Which of the following is the most reasonable conclusion to draw,
given the existence of the above function?

A. Solving domino tiling on a 2D grid can’t be “harder”
than solving maximum matching.

B. Solving maximum matching can’t be “harder”
than solving domino tiling on a 2D grid.

C. Both A and B.

Which of the following is the most reasonable conclusion to draw,
given the existence of the above function?

A. Solving domino tiling on a 2D grid can’t be “harder”
than solving maximum matching.

B. Solving maximum matching can’t be “harder”
than solving domino tiling on a 2D grid.

C. Both A and B.

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25



  

Intuition:

Tiling a grid with dominoes can't be 
“harder” than solving maximum matching, 

because if we can solve maximum 
matching eficiently, we can solve domino 

tiling eficiently.



  

Intuition:

Problem A can't be “harder” than problem 
B, because solving problem B lets us solve 

problem A.

bool solveProblemA(string input) {
    return solveProblemB(translate(input));
}



  

bool solveProblemA(string input) {
    return solveProblemB(translate(input));
}

● If A and B are problems where it's 
possible to solve problem A using the 
strategy shown above*, we write

A ≤p B. 

● We say that A is polynomial-time 
reducible to B.

* Assuming that translate
* runs in polynomial time.



  

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions
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● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

P

Polynomial-Time Reductions



  

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP
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Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



This ≤ₚ relation lets us rank the relative
dificulties of problems in P and NP.

What else can we do with it?



  

Another Example



  

Satisfability

● A propositional logic formula φ is called satisfable if there
is some assignment to its variables that makes it evaluate to
true.

● Which of the following formulas are satisfable?

p ∧ q

p ∧ ¬p

p → (q ∧ ¬q)

● An assignment of true and false to the variables of φ that
makes it evaluate to true is called a satisfying
assignment.



  

SAT

● The boolean satisfability problem (SAT) is the
following:

Given a propositional logic
formula φ, is φ satisfable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfable PL formula }

● Finding good algorithms for SAT is important in
practice and lot of efort has been devoted to
developing tools for SAT.

● But SAT also played a starring role in the formulation
of P vs. NP.



  

An Idea

● We will show how to encode a
computation of a polynomial time Turing
Machine M on input x as a propositional
logic formula F

M(x) accepts if F is satisfable



  

Components

● We must show how to 
● Encode M's tape 
● Encode the tape head
● Encode which instruction is being executed
● Encode each instruction
● Encode accepting/rejecting

● We are just going to sketch this out ...



  

Insight

● Let's say TM M runs for at most n steps

● Could be any polynomial in n, but let's keep things
simple

● Then M can access at most n tape cells

● We can represent the history of M's entire computation
as an n x n array

● One row for each of n time steps

● n cells in a row for the tape contents at each step 

● Some of the cells in the array may not be used, but that's
OK, what's important is that we can give a (polynomial in
n) upper bound on the number of cells needed



  

The Tape

● Assume the tape alphabet is {true, false}
● Imagine a 2D grid of boolean variables

● The ith row is the tape at computation step i
● bij is the value of the jth tape cell at step i

b00 b01 b02 b03 ...

b10 b11 b12 b13 ...

b20 b21 b22 b23 ...

... ... ... ... ...



  

The Tape Head

● Represent the tape head's position at all points in
time as another n x n array of boolean variables

● The tape head can only be at one position on the
tape at each point in time

● So only one boolean in each row can be true
● Add boolean formulas to enforce this for every cell,

e.g.:
– h20 →  (¬h21 ∧ ¬h22 ∧ ¬h23 ∧ ...)

– h21 →  (¬h20 ∧ ¬h22 ∧ ¬h23 ∧ …)

– ...
h00 h01 h02 h03 ...

h10 h11 h12 h13 ...

h20 h21 h22 h23 ...

... ... ... ... ...



  

The Program Statement

● At each step, the TM executes one
program statement

● If there are k statements in the program,
we can use a k x n array of boolean
variables sij to represent the statement
being executed at each step
● Only one statement can be the focus at each

point in time
● The construction is similar to the tape head



  

The Initial State

● Write a formula that defnes the starting
state of the machine:
● If the input is i0 i1 i2 i3, then 

– b00 ↔ i0∧ b01 ↔ i1 ∧ b02 ↔ i2 ∧ b03 ↔ i3
– All other tape locations constrained to be 'false'
– b04 ↔ false ∧ b05 ↔ false ∧ ...

● Execution starts with the frst instruction:
– s00 ↔ true

● The tape head starts at the frst input cell:
– h00 ↔ true



  

Executing a Statement
● Let the wth statement be `write true'

● Assume we are at time step i

● Write true at the current head position, copy tape contents from previous step at other
positions:

(siw ∧ hi0) → bi0

(siw ∧ ¬hi0) → (bi0 ↔ b(i-1)0) 

(siw ∧ hi1) → bi1

(siw ∧ ¬hi1) → (bi1 ↔ b(i-1)1) 

…

● In the next step we execute the next program statement:

siw → s(i+1)(w+1)

● The tape head does not move:

(siw ∧ hi0) → h(i+1)0

(siw ∧ hi1) → h(i+1)1

...



  

Accepting and Rejecting

● One boolean variable a to representing
accepting or rejecting

● If instruction w is accept, then add 
● siw → a

● If instruction w is reject, then add
● siw → ¬a 



  

Encoding P Using SAT

● We can construct a boolean formula (of
polynomial size) that is satisfable if and
only if the polynomial time decider M
accepts its input x.

● Conjunction of:
● Formulas for the tape contents
● Formulas for the head position
● Formulas for program statements



  

Encoding NP Using SAT

● To encode polynomial time verifers, we change
only the input!
● If the input is i0 i1 i2 i3, then 

– b00 ↔ i0∧ b01 ↔ i1 ∧ b02 ↔ i2 ∧ b03 ↔ i3

● After the input, we leave a number of boolean
variables equal to the size of the certifcate
unconstrained in step 0
– Since these variables are unconstrained, the SAT

algorithm can fll them in to make the formula
satisfable if possible – i.e., SAT can guess the
certifcate!  

● All remaining tape locations are constrained to
be 'false' in step 0



  

bool PtimeVerifier(Machine M, Input x) {

  return isSatisfiable(ToFormula(M,x));

}



  

Intuition:

Executing a plynomial time verifer can’t be
“harder” than solving SAT because if we
can solve SAT eficiently, we can solve
polynomial time verifcation eficiently



We've seen that every NP problem is reducible to
SAT.

So SAT is a least as hard as every problem in NP.

SAT is NP-hard



SAT is also in NP

Idea: The certificate for a SAT problem is a
satisfying assignment, which can be checked in

linear time.

Since SAT is in NP and also at least as hard as
every other problem in NP, we say SAT is NP-

complete 



Time-Out for Announcements!



Please evaluate this course on Axess.

Your feedback makes a diference.



  

Final Exam Logistics

● Our fnal exam is on Saturday, Jun 7th from
8:30AM – 11:30 AM.
● Seating assignments will be online soon; we’ll

make an announcement when they’re ready.
● The fnal exam is cumulative

● Like the midterms, it’s closed-book, closed-
computer, and limited-note. You can bring one
double-sided 8.5” × 11” notes sheet with you.



  

Review Sessiom

● Thursday, 2-3 PM in STLC115



  

Back to CS103!



  

Intuition: The NP-complete problems are
the hardest problems in NP.

 

If we can determine how hard those
problems are, it would tell us a lot about

the P ≟ NP question.



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest

problems in NP aren’t actually that
hard. We can solve them in

polynomial time. So that means we
can solve all problems in NP in

polynomial time.

Intuition: This means the hardest
problems in NP aren’t actually that

hard. We can solve them in
polynomial time. So that means we

can solve all problems in NP in
polynomial time.
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P = NP. ■



  

The Tantalizing Truth

     P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest
problems in NP are so hard that

they can’t be solved in polynomial
time. So the hardest problems in NP 

aren’t in P, meaning P ≠ NP.

Intuition: This means the hardest
problems in NP are so hard that

they can’t be solved in polynomial
time. So the hardest problems in NP 

aren’t in P, meaning P ≠ NP.



  

The Tantalizing Truth
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P 
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Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■



  

Why All This Matters

● Resolving P ≟ NP is equivalent to just fguring out
how hard SAT is.

SAT ∈ P    ↔    P = NP

● We've turned an abstract, theoretical problem
about solving problems versus checking solutions
into the concrete task of seeing how hard one
problem is.

● You can get a sense for how little we know about
algorithms and computation given that we can't
yet answer this question!



  

Why All This Matters

● You will almost certainly encounter NP-hard
problems in practice – they're everywhere!

● If a problem is NP-hard, then there is no known
algorithm for that problem that

● is eficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard
problem, you will either need to settle for an
approximate answer, an answer that's likely but
not necessarily right, or have to work on really
small inputs.



  

The Big Picture



  

Take a minute to refect on your journey.



  

Set Theory

Power Sets

Cantor’s Theorem

Direct Proofs

Parity

Proof by Contrapositive

Proof by Contradiction

Modular Congruence

Propositional Logic

First-Order Logic

Logic Translations

Logical Negations

Propositional Completeness

Vacuous Truths

Perfect Squares

Triangular Numbers

Tournaments

Functions

Injections

Surjections

Involutions

Monotone Functions

Minkowski Sums

Bijections

Graphs

Connectivity

Independent Sets

Vertex Covers

Trees

Bipartite Graphs

The Pigeonhole Principle

Ramsey Theory

Mathematical Induction

Complete Induction

The Spanning Tree Protocol

Formal Languages

DFAs

Regular Languages

Closure Properties

NFAs

Subset Construction

Kleene Closures

Error-Correcting Codes

Regular Expressions

State Elimination

Monoids

Distinguishability

Myhill-Nerode Theorem

Nonregular Languages

Context-Free Grammars

Merkle-Damgård Construction

Fixed Point Theorems

Turing Machines

Church-Turing Thesis

TM Encodings

Universal Turing Machines

Self-Reference

Decidability

Recognizability

Self-Defeating Objects

Undecidable Problems

The Halting Problem

Verifers

Diagonalization Language

R and RE

co-RE

Complexity Class P

Complexity Class NP

P ≟ NP Problem

Polynomial-Time Reducibility

NP-Completeness



  

You’ve given yourself the foundation
to tackle problems from all over

computer science.







  

Course Recommendations

● CS154: Introduction to the Theory of Computation

● The “spiritual sequel” to CS103; does a deep dive into automata, TMs,
and computability/complexity theory.

● If you enjoyed the tail end of this course, highly recommended as a
next step.

● CS161: Design and Analysis of Algorithms

● A natural next course in CS theory, focusing on the design of eficient
algorithms.

● (Super helpful for job interviews!)

● CS143: Compilers

● Use your automata and CFG prowess to translate source code into
machine code. Extremely rewarding!

● CS257: Introduction to Automated Reasoning

● See how to automate formal proofs, play around with SAT and
propositional logic, etc.



  

Course Recommendations

Theoryland
● CS154
● Phil 151
● Phil 152
● Math 107
● Math 108
● Math 113
● Math 120
● Math 161
● Math 152

Applications
● CS124
● CS143
● CS161
● CS224W
● CS242
● CS243
● CS246
● CS250
● CS251
● CS255

                              Functions      

                              Graphs           

                                 Number Theory

                          Set Theory

                              Computability

                            Languages /
                           Automata

                     Graphs

                            Functions

                           Complexity  



  

Your Questions



  

Final Thoughts



  

Thanks!
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